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Abstract 
Context  Characterizing landscape ecological com-
plexity and change requires integrated description 
of spatial and temporal landscape organization and 
dynamics, as suggested by the shifting mosaic con-
cept. Remotely sensed land surface phenology allows 
the detection of even small differences among land-
scape patches and through time, allowing for the anal-
ysis of landscapes as shifting mosaics.
Objectives  We sought to quantify aspects of the 
complex landscape behaviors that are implied by 
spatiotemporal variation in land surface phenology. 
We adapted an information-theoretic (IT) framework 
from ecosystem ecology to capture landscape-level 
spatiotemporal complexity and organization and map 
these properties across large areas.
Methods  Phenology data were derived from 
remotely sensed, pixel-level time series of a vegeta-
tion greenness index, across a large portion of North 
America. We summarized multi-year, multi-pixel 

dynamics in transition matrices, calculated IT met-
rics from the matrices, and used matrix projection to 
quantify disequilibrium dynamics and long-term tra-
jectories of the metrics.
Results  Mapping the IT metrics and their disequi-
libria revealed gradients in the spatiotemporal com-
plexity and organization of multi-year land surface 
phenology dynamics at continental to local scales. 
These gradients suggest influences of biophysical and 
biogeographic setting, ecological development and 
disturbances, land use, and other drivers of landscape 
ecological dynamics. The spatiotemporal IT met-
rics were influenced by both year-to-year dynamics 
and spatial landscape heterogeneity, but correlations 
with spatial and temporal complexity measures var-
ied among the IT metrics. Landscapes showing the 
strongest disequilibrium dynamics were mostly in the 
western part of the continent and appeared to be asso-
ciated with large-scale disturbances including severe 
fire, forest pathogens, climate variability, and land use 
change—important subjects for further study.
Conclusions  This approach reveals novel features of 
the shifting landscape mosaic, with implications for 
understanding landscape resilience and sustainability. 
Resulting spatial data products describing long-term 
landscape dynamics have potential applications in 
broad-scale ecological modeling, monitoring, assess-
ment, and prediction.
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Introduction

A landscape can be seen as a complex entity com-
posed of smaller functional components, whose 
characteristics and organization change over time 
at multiple spatial and temporal scales. This ‘shift-
ing mosaic’ view of internally complex, dynamic 
landscapes has long been a core concept for under-
standing landscape ecological processes, with broad 
implications for conservation and sustainability prob-
lems (Mayer et al. 2016; Spies and Turner 1999; Wu 
2013; Wu and Loucks 1995). The shifting mosaic 
concept highlights the importance of studying spa-
tial and temporal landscape structure and dynamics 
in a unified way, and it also implies an approach to 
monitoring spatiotemporal landscape dynamics quan-
titatively. For example, monitoring state transitions of 
individual pixels in a multi-pixel landscape over time, 
then compiling a matrix of transition probabilities, is 
a way to quantify a shifting landscape mosaic (Riit-
ters et al. 2020, 2009). This relies on a classification 
system for pixel states (e.g., land cover/use types), 
with pixels assigned to a class in each time step so 
that transitions (e.g., from forest to urban cover/use) 
accumulate over time.

Remote sensing provides a primary basis for long-
term and large-scale landscape monitoring. But to 
provide information about nuanced landscape eco-
logical variability—for example, processes that occur 
within land use or ecosystem types—change detec-
tion needs to occur at an accordingly nuanced level 
(Kennedy et al. 2014; Pettorelli et al. 2014a, 2014b). 
An increasingly important approach for achieving this 
is the study of vegetation phenology—the timing of 
vegetation changes, often seasonal or cyclical—gen-
eralized in a remote-sensing context as Land Sur-
face Phenology (LSP; Caparros-Santiago et al. 2021; 
Dronova and Taddeo 2022; Henebry and de Beurs 
2013; Morisette et  al. 2009). Gross changes in veg-
etation are tracked through many time steps within 
the annual cycle to characterize within-year phenol-
ogy profiles, usually measured by a greenness index 
such as the Normalized Difference Vegetation Index 
(NDVI) or the Enhanced Vegetation Index (EVI), 

which are strongly correlated with gross primary 
productivity and biomass (Kerr and Ostrovsky 2003; 
Pettorelli et al. 2011, 2005). Multiple descriptive met-
rics can be derived from LSP profiles, including the 
degree of seasonality, seasonal timing benchmarks 
such as the beginning of the growing season, and 
productivity indicators such as mean or cumulative 
growing season greenness (Brooks et  al. 2020; Cle-
land et al. 2007; Reed et al. 1994; Zhang et al. 2003). 
Such metrics are informative with respect to a wide 
variety of ecosystem and landscape properties and 
functions, and mapping them as spatial variables has 
advanced the study of landscape, ecosystem, ecore-
gion, and even biome diversity and distributions 
(Bolton et  al. 2020; Buitenwerf and Higgins 2016; 
Polgar and Primack 2011; Radeloff et  al. 2019; Sil-
veira et al. 2022). The annual LSP profiles of pixels 
(or landscape patches) are influenced by biophysical 
context (e.g., climate and soils), vegetation composi-
tion, disturbances of various kinds (e.g., fire and for-
est insect and disease outbreaks), land use, and other 
dynamic  factors (Brooks et  al. 2020; Cleland et  al. 
2007; Frantz et al. 2022; Liang et al. 2021; Norman 
et al. 2017).

The capacity of remotely sensed LSP data to 
indicate ecologically nuanced year-to-year pixel 
dynamics makes it an ideal candidate for observ-
ing landscapes as shifting mosaics over longer time 
periods, but we are aware of no published examples 
of this.  Choices about how multi-year, multi-pixel 
LSP dynamics might be quantified depend on broader 
objectives to inform sustainability and conservation 
problems, ecosystem management, or other targeted 
purposes. This study demonstrates an approach using 
information theory (IT) to quantify landscape-level 
LSP dynamics. To provide context for this approach 
in terms of broader objectives, a discussion of land-
scape resilience follows.  Landscape resilience is  a 
central concept linking landscape change to sustain-
ability and conservation problems. Resilience has 
resisted simplistic definitions, and due to its con-
textual, contingent, and multivariate nature it may 
not be captured by any single quantitative measure 
(Angeler and Allen 2016; Folke 2006; Mayer 2008; 
McWethy et al. 2019; Quinlan et al. 2016). Nonethe-
less, informed judgements about resilience depend on 
repeatable measurements of landscape behavioral and 
organizational characteristics. We sought to develop 
such measurements as tools for studying landscape 
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resilience, geared to the systems-ecology approaches 
that are needed in this context.

Landscape resilience describes how the aggregate 
behavior of diverse landscape components and pro-
cesses, experiencing varying kinds and degrees of 
change, influence sustainability outcomes such as the 
continued flow of ecosystem services or the mainte-
nance of biodiversity (McWethy et al. 2019; Quinlan 
et  al. 2016; Seidl et  al. 2016; Wu 2013). Landscape 
sustainability can be thought of for these purposes as 
“the capacity of a landscape to consistently provide 
long-term, landscape-specific ecosystem services 
essential for maintaining and improving human well-
being in a regional context and despite environmental 
and sociocultural changes” (Wu 2013). While resil-
ience can be considered as a value-free characteriza-
tion of system behavior, its association with sustain-
ability usually also  entails identifying particular 
system properties whose sustainability is considered 
desirable (Carpenter et al. 2001; Mayer 2008). Resil-
ience emphasizes how thresholds, nonlinearities, dis-
equilibria, and novelty in complex system dynamics 
may structure capacities for both sustainability and 
adaptation (Folke 2006; Scheffer et  al. 2001; Wu 
2013). Ecosystem growth, development, disturbance, 
and recovery play crucial roles—the complexity and 
organization of these processes are linked to a sys-
tem’s capacity to support sustainability goals (Levin 
and Lubchenco 2008). As the disturbance history 
of individual system components plays out through 
time, aggregate system behavior may be near a stable 
equilibrium, or it may drive shifts towards new states 
and novel dynamics. Such fundamental shifts may be 
inconsistent with some sustainability goals, but they 
may also be associated with adaptability (Elmqvist 
et  al. 2003; McWethy et  al. 2019; Seidl et  al. 2016; 
Wu 2013).

Resilience theory has roots in ecosystem ecology 
(Folke 2006; Gunderson 2000), wherein ecosystems 
are viewed as complex systems—networks of biotic 
and abiotic components and processes with quanti-
fiable, aggregate system dynamic properties (Hol-
ling 1973; Li 2000; McNaughton 1977). Ulanowicz 
(1986, 1997) followed others in adapting measures of 
system entropy from IT to quantify the complexity of 
energy flows and food web dynamics among organ-
isms within an ecosystem (MacArthur 1955; Rutledge 
et  al. 1976). Various IT measures have since  been 
adapted to characterize landscape complexity, usually 

in relation to spatial composition and configuration 
(Nowosad and Stepinski 2019; Riitters et  al. 2023), 
but sometimes for spatiotemporal analysis (Parrott 
2010; Zaccarelli et  al. 2013). Ulanowicz’s (1986) 
framework is useful because it partitions the com-
plexity of system dynamics into organized (predict-
able) and disorganized (unpredictable) components—
the Mutual Information and Conditional Entropy, 
respectively.  It also  scales these to system produc-
tivity, resulting in metrics termed Ascendency and 
Overhead. While Ulanowicz’ approach has not been 
widely used in landscape ecology, it is broadly appli-
cable to a wide variety of systems (Ulanowicz 1997, 
2003). It holds special appeal for interpreting system 
complexity in terms related to resilience, because the 
metrics help characterize a system’s history of devel-
opment and disturbance, and its capacity for change 
and adaptation (Costanza and Mageau 1999; Ulanow-
icz et al. 2009).

Our goal was to adapt IT metrics from ecosystem 
ecology to quantify landscape-level LSP composi-
tion and  change, characterizing the observed  spa-
tiotemporal dynamics  as aggregate, system-level 
properties. We compiled LSP year-to-year dynam-
ics within multi-pixel landscapes,  then mapped the 
resulting IT  metric values for most of temperate 
North America. We expected to find coherent geo-
graphic variation in the complexity and organization 
of LSP dynamics, at continental to local (tens of kilo-
meters) scales. More generally, we expected that the 
IT approach can reveal novel features of the shifting 
landscape mosaic, with potential to support assess-
ments of landscape resilience.

Although not analyzed in this study, we also 
expected variation in the IT metrics to be relat-
able to a variety of environmental drivers, as well 
as outcomes such as the provisioning of ecosystem 
services. This is because the IT metrics, and the tra-
jectories of landscape change they suggest, are ulti-
mately determined by multiple drivers of the annual 
LSP states and state changes we studied. We did not 
analyze variation in the metrics relative to specific 
drivers, instead emphasizing the implications of the 
metrics as integrative measures of overall landscape 
behavior, particularly in resilience and sustainability 
contexts (Costanza and Mageau 1999; McWethy et al. 
2019; Quinlan et  al. 2016; Wu 2013). However, to 
better illustrate how the metrics can aid the study of 
specific drivers that may impact landscape resilience, 
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we also discuss some clear relationships to climate 
and land use/cover, and we provide two cases involv-
ing large-scale forest disturbances.

Methods

Our analysis began with a continental-scale data-
set of pixel-level NDVI time series derived from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite system, resolved into annual LSP 
states (Brooks et  al. 2020). We compiled transition 
matrices for multi-pixel landscapes from nearly two 
decades of annual transitions among the pixel-level 
LSP states, then calculated the IT metrics from the 
transition matrices. The metrics take on fixed values 
quantifying dynamics that have been summarized 
across the entire time period. But the observed transi-
tions also suggest either stable (i.e., at dynamic equi-
librium) or unstable complexity and organization. To 
examine this, we used matrix projections to compare 
the observed dynamics with projected equilibrium 
dynamics. This produced estimates of long-term tra-
jectories of change—or disequilibria—in the IT met-
rics, given the observed dynamics. The following sec-
tions detail each of these steps in our analysis.

Annual phenological classification

Our approach to classify annual phenological states 
(Fig. 1) is reported in Brooks et al. (2020). While it 
was not part of the present analysis, generating phe-
nological classes (‘phenoclasses’) was a basis for 
quantifying landscape LSP composition and change, 
so a review of these methods provides context for the 
present study. Briefly, it began with a 2000–2018 time 
series of NDVI values for MODIS pixels, each nomi-
nally 250 m2, in North America between 20° and 50° 
latitude (Spruce et al. 2016). Daily to twice-daily data 
from the Aqua and Terra satellites were previously 
processed to produce a smoothed and gap-filled, max-
composite time series reported at 8-day intervals, or 
46 periods per year. This processed NDVI dataset 
has few missing values, minimizes cloud interfer-
ence, and has been used extensively in LSP applica-
tions and research (Konduri et al. 2020; Norman et al. 
2013; Spruce et al. 2019, 2011).

Each pixel’s time series was plotted in polar 
space and segmented into phenological years that 

begin and end at the date of the mean antivector of 
the values, independent of calendar year (Brooks 
et  al. 2017). Then eleven circular metrics were cal-
culated by pheno-year, quantifying various aspects 
of the annual phenological cycle (Table  1; Fig.  1d). 
To enhance interpretability and reduce data volume, 
these annual metrics were subjected to a factor analy-
sis resulting in four factors that explained 95% of the 
variance in the full dataset, and which described the 
three fundamental aspects of LSP: productivity, sea-
sonality, and timing. One factor was associated with 
productivity, having high loadings for variables that 
quantify the magnitude of NDVI during the growing 
season. Another factor was associated with seasonal-
ity, having high loadings for the length of the growing 
season and the standard deviation of NDVI. Timing 
required two factors to fully describe, due to the cir-
cular nature of the annual cycle and the polar coordi-
nate approach used to uniquely identify points along 
the cycle. These two factors had high loadings for 
variables expressing those timing points, including 
the beginning, middle, and end of the growing season 
relative to the Julian calendar.

Finally, a nonhierarchical k-means cluster analysis 
partitioned the four-dimensional factor space into 500 
clusters (Brooks et al. (2020) discuss the motivation 
for this choice of the number of clusters to represent 
the range of LSP variability in the data). These clus-
ters constitute a quantitative typology of LSP annual 
states that we refer to as phenoclasses (Fig. 1). This 
results in a phenoclass assignment for each pixel in 
each pheno-year, reducing the dynamics of each pixel 
to a series of annual state transitions from one phe-
noclass to another. A year-to-year phenoclass change 
indicates that the gross vegetation phenology, as 
defined by the four factors, has changed enough to 
suggest meaningful change in the vegetation (i.e., 
usually induced by disturbance, growth, or response 
to conditions such as drought stress (Brooks et  al. 
2020).

These states and transitions were the starting point 
for the present analysis. The transition from any given 
phenoclass to another represents a unique and defined 
change in some combination of productivity, season-
ality, and timing. However, the present analysis does 
not track the specific character of every possible tran-
sition type—instead, it uses this diversity of transi-
tion types to quantify the degree, complexity, and 
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Fig. 1   Overview of land surface phenological classification 
based on annual phenology metrics, reported by Brooks et al. 
(2020). a, b Normalized Difference Vegetation Index (NDVI) 
time series with an 8-day sampling interval were developed 
for each MODIS pixel (~ 250 × 250 m2) across most of North 
America. Seasonality, disturbance, and recovery are evident 
in the example pixel. c The polar-plotted time series were 
segmented into phenological years based on their seasonality 
timing, with the start of the phenological year defined by the 
antivector of the data. d Polar metrics describing the annual 
phenology were calculated for each pixel in each year. Abbre-
viated metric names are linked to descriptions in Table  1 

(mean and standard deviation of growing season NDVI are 
not shown here; they were calculated from the NDVI values 
between GSbegin and GSend). e The length of the growing 
season (LOS) is one metric, shown for illustration. Factor anal-
ysis reduced these metrics to four fundamental dimensions: 
seasonality, productivity, and two timing dimensions. f Phe-
nological classes (phenoclasses) were created from the factors 
through cluster analysis. Phenoclasses are shown as an RGB 
color composite of the cluster centroid values for the three 
most important phenological factors. The phenoclass member-
ship of a pixel may change from year to year
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organization of the overall LSP dynamics occurring 
within multi-pixel landscapes.

Spatial and temporal scale

We defined a landscape as a square group of adjacent 
MODIS pixels observed over a continuous multi-
annual period, allowing for the analysis of spatiotem-
poral heterogeneity at the landscape level. We ana-
lyzed landscapes composed of 25 MODIS pixels in a 
5 × 5 grid, 134 ha in total area. This landscape extent 
was essentially arbitrary—methods are the same for 
other extents—but we chose to illustrate metric cal-
culations at a small landscape size to emphasize the 
resulting spatial gradients among landscapes at man-
agement-relevant scales and to minimize process-
ing times. We used a sliding window approach with 
a window centered on every pixel, so that each pixel 
was assigned results for the surrounding 25-pixel 
landscape. We present results for North America 
based on 18 consecutive pheno-years beginning in 
calendar year 2000 (Brooks et al. 2020). The number 
of possible transitions (nst) observed in a landscape 
was therefore ns(nt -1) = 425, where ns is the number 
of pixels or the spatial sample, and nt is the number of 
pheno-years or the temporal sample.

Information‑theoretic metrics

We built a transition matrix for each pixel based on 
its surrounding 25-pixel landscape, to quantify the 
observed phenoclass composition and year-to-year 
transitions. We did this by extracting the time series 
of phenoclass assignments for each included pixel 
and tabulating the frequencies of transitions from 
any phenoclass A to any phenoclass B (Fig.  2). 
Each cell in the matrix therefore identified a unique 
A-B transition type, and the matrix summarized the 
frequencies of phenoclasses and transition types 
in the landscape. This matrix was the basis for all 
subsequent calculations of IT metrics. All analyses 
were performed in R (R Core Team 2021).

Each pixel in a landscape could, in a given year, 
belong to any of the 500 possible phenoclasses, 
making the transition matrix potentially large. In 
practice the combination of phenoclasses found 
together in a given landscape and the observed 
transition types were far more constrained, because 
some phenoclasses only occur in certain regions, 
some transition sequences are highly improbable 
(e.g., a very low-NDVI to a very high-NDVI phe-
noclass from one year to the next), etc. Further, as 
described below, unobserved transition types had 
no influence on the IT metric calculations. Transi-
tion matrices were therefore constructed according 
to the phenoclasses actually observed in a given 
landscape.

Table 1   Eleven LSP variables used to describe annual phenology based on pixel-level NDVI time series

Refer to Fig. 1 for an illustration of how each was calculated using a polar coordinate transformation approach
Day = Julian calendar day corresponding to the radial angle at which a given threshold occurs
Adapted from Brooks et al (2020)

Short name Name Units Description

GSbegin Beginning of growing season Day 15% of cumulative annual NDVI
GSearly Middle of early growing season Day 32.5% of cumulative annual NDVI
GSmid Middle of growing season Day 50% of cumulative annual NDVI
GSlate Middle of late growing season Day 65% of cumulative annual NDVI
GSend End of growing season Day 80% of cumulative annual NDVI
LOS Length of growing season Days Number of days between GSbegin and GSend
meanNDVIgrw Average growing season NDVI NDVI Average NDVI during the growing season
stdNDVIgrw Growing season NDVI variability NDVI Standard deviation of NDVI in the growing season
AVearly Early growing season seasonality NDVI Length of the average vector for the early growing season
AVgrw Growing season seasonality NDVI Length of the average vector for the growing season
AVlate Late growing season seasonality NDVI Length of the average vector for the late growing season
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Our measure of overall landscape dynamic 
complexity was the Shannon Entropy index H, 
equivalent to system entropy, and widely used as 
a fundamental measure of complexity or diversity 
(Shannon 1948):

where P are the probabilities associated with observed 
phenoclass transitions. Unobserved transition types 

(1)H(P) = −
∑

i

(
Pi ⋅ log2

(
Pi

))

(P = 0) were entered in the sum as zeroes and did not 
influence the result. To calculate H for a given land-
scape, we summarized the data as follows. Let M be 
the transition matrix with elements Mi,j recording the 
observed frequencies of transitions from phenoclass i 
in year t to phenoclass j in year t + 1, across all obser-
vation years. Calculate the marginal (R = Row and 
C = Column) and total sums and probabilities:

Fig. 2   Aspects of landscape spatiotemporal organization and 
behavior are quantified by calculating information-theoretic 
(IT) metrics from a transition matrix that summarizes inter-
annual changes in land surface phenology. a Phenoclass mem-
bership data (Fig. 1f, shown here for the Mid-Atlantic region 
of the United States) are extracted for b a chosen landscape 
extent of contiguous MODIS pixels, for a continuous sequence 
of phenological years. In a 25-pixel, 18-year landscape there 
are 425 year-to-year transitions. c A transition matrix for each 

such landscape holds the frequencies of all inter-annual tran-
sitions from one phenoclass (rows; year A) to another (col-
umns; year B) summarized for the multi-year period. Cells on 
the diagonal summarize transitions during which there was no 
phenoclass change between years. d Landscape IT metrics are 
calculated from the transition matrix, assigned to the center 
pixel, and mapped at MODIS spatial resolution. Each pixel 
contains information about the dynamics of the surrounding 
landscape
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where A denotes the ‘from’ year t, and B denotes the 
‘to’ year t + 1. The Shannon Entropies of the ‘from’ 
and ‘to’ transition probabilities are then HA = H(PA) 
and HB = H(PB). We used their geometric mean:

The mean is useful because at the beginning of 
the full temporal sequence there is an initial ‘from’ 
year which is not a ‘to’ year, and likewise the final 
year is a ‘to’ but not a ‘from’. Therefore, HA and 
HB typically have slightly different values, and 
meanH is informed by all years. Hereafter we refer 
to meanH simply as H.

Mutual information (MI) is a key measure of sys-
tem organization and development, closely related 
to H (Rutledge et  al. 1976; Steuer et  al. 2002; 
Ulanowicz 1986). MI measures the degree to which 
knowledge about A influences the uncertainty in 
B (and vice versa). That is, MI estimates the pre-
dictability of the phenoclass distribution in a given 
year knowing the classifications of the same pixels 
in the previous (or subsequent) year. It is symmetri-
cal with respect to A and B. The average MI for M 
across all years is:

Unobserved transition types were entered as 
zeroes and did not influence the result. The H and 

(2)Ri =
∑

j
Mi,j

(3)Ci =
∑

j
Mi,j

(4)total =
∑

C

(5)PAi =
Ri

total

(6)PBj =
Cj

total

(7)PABi,j =
Mi,j

total

(8)meanH =
√
(HA ⋅ HB)

(9)MI =
∑

i

∑

j

(
PABi,j ⋅ log2

(
PABi,j

PAi ⋅ PBj

))

MI are both dimensionless informational quantities 
scaled in bits. The MI is always a fraction of H, 
quantifying the landscape dynamic complexity that 
is organized, i.e., LSP states are predictable given 
knowledge of prior states. The remaining fraction 
of H is the conditional entropy, CE = H(B|A) = H 
– MI, indicating the portion of the landscape 
complexity that is disorganized or unpredictable 
(Rutledge et  al. 1976; Steuer et  al. 2002; Ulano-
wicz 1986). We also calculated the proportion of 
H accounted for by MI, to quantify the degree of 
organized complexity relative to the overall com-
plexity. Ulanowicz (1986) referred to this as Devel-
opment, calculated as MI / H.

Additional IT metrics were introduced by Ulano-
wicz (1986, 1997) as a means of scaling H, MI, and 
CE to overall ecosystem activity or productivity. He 
estimated a scaling factor from the transition matrix 
as the total ecosystem throughput, by summing the 
energy transfers (i.e., transitions) in the system. A 
similar measure of total landscape dynamic activ-
ity (DA) can be calculated as the proportion of off-
diagonal transitions in Mi,j, since our on-diagonal 
transitions are actually non-transitioning or stable 
phenoclasses:

But the phenoclass transitions were not equiva-
lent to trophic energy transfers, instead representing 
LSP dynamics driven by gross vegetation changes. 
Therefore, to instead scale to gross primary pro-
ductivity, we used NDVI (Pettorelli et al. 2005). To 
estimate an overall productivity scaling factor, we 
used the mean NDVI across all MODIS pixel-year 
combinations in the landscape (meanNDVI).

Ulanowicz termed the system organization 
(MI) scaled by productivity as Ascendency = MI ∙ 
throughput. Our Ascendency calculation was there-
fore Ascendency = MI ∙ meanNDVI. Scaling CE in 
the same way produces system Overhead, Over‑
head = CE ∙ meanNDVI, and summing Ascendency 
and Overhead produces a metric corresponding to 
H and scaled to productivity, the Capacity: Capac‑
ity = Ascendency + Overhead = H ∙ meanNDVI. Note 
that the proportion of Capacity accounted for by 
Ascendency, i.e., Ascendency/Capacity, is equiva-
lent to Development (Ulanowicz 1986). Metrics 
analogous to Ascendency, Overhead, and Capacity 

(10)DA =
∑

j
PABi,j −

∑
j
diagPABi,j
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but scaled to landscape dynamics irrespective of 
productivity could be calculated by substituting DA 
for meanNDVI, but this is not pursued here.

Spatial and temporal contributions to landscape 
complexity

Characteristics of Mi,j are driven by both spatial and 
temporal heterogeneity, and as a result, the IT met-
rics are spatiotemporal descriptors. The spatial and 
temporal contributions can only be approximately 
decomposed, but two metrics help to indicate these 
contributions. Our approach was to assess temporal 
complexity by looking across years within pixels, 
and likewise to assess spatial complexity by looking 
across pixels within years. Temporal heterogeneity 
arises from the phenoclass transitions of individual 
pixels that populate the transition matrix, and the 
entropy of these pixel-level changes can be estimated 
by H using only the off-diagonal marginal sums, i.e., 
including only the matrix cells that represent inter-
annual change between different phenoclasses. To 
scale this value appropriately it is multiplied by the 
proportion of the transitions that are in fact off-diag-
onal, i.e., DA. We term this the Temporal H, calcu-
lated as Hoffdiag · DA. While it quantifies the complex-
ity of the phenoclass changes through time, the basis 
for its calculation is different from H and it cannot be 
strictly considered a component of H. Spatial hetero-
geneity also contributes to overall entropy because 
within-year phenoclass differences among pixels con-
tribute to the composition of a landscape. This can be 
estimated by calculating H for phenoclasses observed 
in a given year, then taking the geometric mean 
across all years, i.e., the mean annual H. We term this 
the Spatial H, and the same caveats apply to its rela-
tion to H. This Spatial H accounts for landscape LSP 
composition, not configuration, and it is not equiva-
lent to entropy-based measures of the complexity 
of landscape configuration (Nowosad and Stepinski 
2019; Wang and Zhao 2018). We used Spatial H and 
Temporal H only as an approximate means to com-
pare the relative contributions of spatial and temporal 
complexity to the IT metrics of primary interest.

Projecting landscape dynamics

Using projection matrices (Caswell 2001; Vandermeer 
1981), we calculated the trajectory of change over 

time in landscape composition—i.e., change in the fre-
quency distribution of phenoclasses present in the land-
scape—as a function of the observed dynamics. The 
current multi-annual phenoclass frequency distribu-
tion is represented by the marginal distribution of phe-
noclasses, Ri, over the observed period. The projection 
matrix m has elements mi,j equal to the probabilities of 
B, conditional on A:

where unobserved A resulted in zero values for the 
conditional probabilities. We then estimated the 
expected distribution D at y years of change as

If the projection is carried out long enough, the phe-
noclass distribution will stabilize at a dynamic equilib-
rium. It is dynamic in the sense that inter-annual pheno-
class transitions still occur, but at equilibrium they no 
longer alter the multi-annual phenoclass composition 
of the landscape. We obtained the equilibrium vector 
(EV) quantifying the equilibrium phenoclass distribu-
tion by calculating D for an arbitrarily large number of 
years, e.g., y = 1000 (or equivalently by examining the 
eigenvector of the projection matrix for the dominant 
eigenvalue). The goal was not to predict future condi-
tions, but to assess the trajectory of the non-equilib-
rium landscape implied by the observed dynamics. 
Given that a landscape was not at equilibrium over the 
years observed, EV estimated the conditions it trended 
towards.

Observed landscapes may be close to dynamic equi-
librium, or far from it. This can be measured by con-
trasting EV with the current phenoclass distribution Ri. 
To quantify this, we used the Kullback–Leibler (KL) 
divergence, an established IT measure of divergence 
between two probability distributions (Kullback 1997):

The Shannon entropy and mutual information at 
equilibrium can be calculated by combining EV with 
Eqs. 1 and 9:

(11)PB|Ai,j =
PABi,j

PAi

(12)D = my
⋅ Ri

(13)KL
(
EV ,PAi

)
=
∑

i

(
EVi ⋅ log2

(
EVi

PAi

))

(14)H(EV) = −
∑

i

(
EVi ⋅ log2

(
EVi

))
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Under equilibrium conditions, the Row and Col-
umn marginal probabilities are equivalent, and equal 
to EV, so it is unnecessary to calculate meanH(EV). 
The remaining IT metrics at equilibrium conditions 
can be calculated from H(EV) and MI(EV). For the 
NDVI-scaled metrics, commensurate meanNDVI 
and meanNDVI(EV) values were calculated as the 
mean of NDVI values for the phenoclasses present, 
weighted by their frequencies. We then used the dif-
ference between IT metric values under current con-
ditions and equilibrium conditions (e.g., H(EV) – H) 
to quantify the trajectory of long-term increase or 
decrease implied by the observed dynamics—i.e., dis-
equilibrium—for each of the metrics.

Metric maps and summaries

Table  2 lists the landscape metrics produced by our 
analysis. We generated gridded output for each met-
ric at MODIS (250 m2) spatial resolution, using the 

(15)

MI(EV) =
∑

i

∑

j

((
PB|Ai,j ⋅ EVj

)
⋅ log2

(
PB|Ai,j

EVj

)) Raster package in R (Hijmans 2022), then developed 
maps using ArcGIS software (ESRI 2019). We also 
produced graphical summaries to examine metric 
value distributions, and we used Pearson correlation 
and simple linear regression to compare variation in 
the IT metrics to meanNDVI, Spatial H, and Tempo-
ral H. We used a spatially balanced, random sample 
of 25,000 landscapes across the study area for the 
data plots, correlations, and regressions. We do not 
present significance tests because the large sample 
size virtually guaranteed significant results at nor-
mal alpha levels, even for marginal correlations. The 
sampling scheme, and all maps, used the US National 
Atlas Equal Area projected coordinate system.

Local illustrations of landscape dynamics with 
known drivers

Local cases of landscapes with well-documented 
disturbance histories can help to interpret some driv-
ers of variation in the IT metrics. These examples 
also help to illustrate how the metrics capture com-
plex underlying LSP dynamics, in extreme cases 
where large-scale disturbances and post-disturbance 

Table 2   Information-theoretic metrics developed to quantify spatiotemporal complexity and organization of landscape dynamics

1 Equilibrium distance was calculated for each of the primary IT metrics (the first seven metrics listed); units are the same as the 
respective metric
The metrics are calculated from series of transitions over time between annual land surface phenology states, in a shifting landscape 
mosaic composed of multiple pixels

Metric Abbr Unit Description

Shannon Entropy H Bits The total complexity of spatiotemporal dynamics. Quantifies the variety of phenoclasses 
and phenoclass transition types

Mutual Information MI Bits The organized and predictable component of H. Quantifies regular or structured dynam-
ics: knowledge of prior states allows prediction of subsequent states

Conditional Entropy CE Bits The disorganized and unpredictable component of H (H–MI). Quantifies chaotic dynam-
ics: prior states do not provide information about subsequent states

Development – Proportion MI standardized with respect to H (MI/H or Ascendency/Capacity). The degree of 
organization, given the amount of complexity present

Capacity – Bits*ndvi H scaled to productivity (H*ndvi)
Ascendency – Bits*ndvi MI scaled to productivity (MI*ndvi)
Overhead – Bits*ndvi CE scaled to productivity (CE*ndvi)
Dynamic activity DA Proportion Degree of inter-annual variability; indicates the prevalence of short-term dynamics
Temporal H – Bits Complexity of landscape changes over time
Spatial H – Bits Complexity of within-year landscape composition
Equilibrium distance KL Bits Divergence of the observed dynamics from equilibrium dynamics; gross measure of 

disequilibrium, implying a long-term trajectory of change
Equilibrium distance1 – Difference between the equilibrium and observed values of an IT metric; indicates the 

long-term trajectory of the metric implied by the dynamics
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dynamics dominate the long-term LSP dynamics. 
We used two such cases from the eastern and west-
ern United States to interpret pixel-level NDVI time 
series, annual phenoclass compositions, and selected 
IT metrics. These examples highlight the potential 
for monitoring long-term dynamics as a cumulative 
outcome of complex landscape histories. The east-
ern case examines slow but pervasive impact from an 
invasive forest insect pest, and the western case exam-
ines fast, severe disturbance and subsequent regrowth 
associated with wildfire.

Results

Continental-scale maps of the IT metrics are shown 
in Figs.  3–5; the full map collection including met-
rics not shown in Figs. 3–5 is in Online Resource 1. 
The seven principal metrics (Entropy, Mutual Infor-
mation, Conditional Entropy, Capacity, Ascendency, 

Overhead, and Development) showed spatially coher-
ent pattern at continental and regional scales (Figs. 3 
and 2). Some patterns were clearly associated with 
familiar geographic and biophysical gradients includ-
ing climate, topography, and land use/land cover—
quantifying these associations is beyond the scope 
of the current study but will be the subject of future 
work. Other patterns were less familiar, particularly 
those indicating unexpected similarity in IT met-
ric values between landscapes that differ strongly in 
terms of the ecosystems present and other biophysical 
context.

Shannon Entropy (H), our measure of overall com-
plexity, correlated more strongly with the Temporal 
H index than the Spatial H index (Fig.  4), indicat-
ing that H did not result only from spatial pheno-
class heterogeneity, but was largely determined by 
phenoclass changes through time. Shannon Entropy 
was highest for landscapes with near average values 
for meanNDVI (Fig. 4). Landscapes with high H and 

Fig. 3   Land surface phe-
nology-based, information-
theoretic metrics character-
izing landscape dynamics 
and organization, estimated 
across 25-MODIS-pixel 
landscapes and over 18 phe-
nological years correspond-
ing approximately to 2000 
– 2017. Color ramps are 
scaled to different ranges 
for the different metrics. 
Refer to Table 2 for metric 
descriptions
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Fig. 4   Information-theoretic landscape metrics plotted in rela-
tion to the landscape mean NDVI, the complexity of changes 
through time as indicated by the Temporal H index, and spatial 
landscape complexity as indicated by the Spatial H index. Plots 
included a spatially balanced, random sample of 25,000 land-

scapes from across the study area. Point color distinguishes 
majority forest from majority non-forest landscapes. The 
Pearson correlation coefficients at the upper left of each plot 
and the linear regression slopes are color-coded for all points 
(black), forest, and non-forest
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Fig. 5   Land surface phenology-based measures of the mag-
nitude and direction of landscape dynamics, estimated across 
25-MODIS-pixel landscapes and over 18 phenological years 
corresponding approximately to 2000 – 2017. a Dynamic 
Activity (DA) measures the proportion of annual phenoclass 
transitions that comprise a change in phenoclass rather than 
stasis; it is a measure of short-term, inter-annual dynamics. 
b The Kullback–Leibler (KL) Divergence estimates distance 
between the observed phenoclass composition (across the full 

time series) and the composition at dynamic equilibrium; it is 
a measure of the degree of long-term compositional change 
implied by the observed dynamics. While inter-annual phe-
noclass dynamics are common (a), only a fraction of high-DA 
landscapes are far from equilibrium (b). c–f Long-term trajec-
tories in IT metrics implied by the disequilibrium dynamics 
expressed in (b). These trajectories indicate directional change 
in the complexity and organization of landscape dynamics
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near average NDVI appeared to be common in agri-
culture- and rangeland-dominated regions, and at 
high elevations in montane regions such as the Rocky 
Mountains (Fig.  3). Shannon Entropy was low in 
both low-NDVI (e.g., Southwestern desert) and high-
NDVI (e.g., forests in the Eastern US and Pacific 
Northwest) landscapes.

Conditional Entropy (CE), the unpredictable or 
chaotic component of H, correlated even more weakly 
than H with Spatial H, whereas MI, the predictable or 
organized component of H, correlated approximately 
equally with Spatial H and Temporal H (Fig.  4). 
This indicates that the disorganized, unpredictable 
component of landscape complexity was associated 
more strongly with temporal variability than with 
spatial heterogeneity. Shannon Entropy, MI, CE, and 
Development showed low Pearson correlation with 
meanNDVI. But as expected, the NDVI-scaled met-
rics Capacity, Ascendency, and Overhead were more 
strongly positively correlated with meanNDVI—and 
these correlations were stronger in forest than in non-
forest landscapes (Fig. 4). All three of these produc-
tivity-scaled metrics were more strongly correlated 
with Spatial H than with Temporal H, in contrast to 
H, MI, and CE.

The dynamic activity (DA) index, the proportion 
of transitions that were off-diagonal, had its highest 
values in the Western and especially the Midwestern 
US. Its spatial pattern corresponded most closely to 
CE among the IT metrics (compare Fig. 5a to Fig. 3), 

further indicating the importance of inter-annual phe-
noclass variability as a driver of CE. However, DA 
did not correspond closely to KL divergence (Fig. 5). 
That is, strong inter-annual phenoclass variability did 
not necessarily imply, and in most landscapes did 
not result in, a pronounced trajectory of long-term 
phenoclass compositional change. In many high-DA 
landscapes in agricultural regions and rangelands, for 
example, pixels were likely to fluctuate among phe-
noclasses already present, rather than transition direc-
tionally toward locally novel states. These dynamic, 
but near-equilibrium (low-KL divergence) landscapes 
contrasted with high-KL divergence landscapes, 
which were concentrated in the western part of the 
continent and were more spatially isolated. This also 
had implications for the disequilibrium trajectories of 
the IT metrics as estimated through matrix projection 
(i.e., the difference between their observed and equi-
librium values—Fig. 5c–f). Those trajectories showed 
spatially coherent pattern with many, spatially patchy, 
examples of both increase and decrease. At the con-
tinental scale, most landscapes showed values near 
zero, i.e., near dynamic equilibrium. While we do not 
present evidence beyond the spatial patterns visible in 
Fig. 5 and two illustrative local examples (Figs. 6 and 
7), we suggest that many high-disequilibrium land-
scapes experienced large-scale disturbances during 
the study period or just prior to it, including impacts 
from severe wildland fire, forest pathogens, extended 
drought or other forms of increased climate variabil-
ity (Brooks et  al. 2020), and/or some forms of land 
use change.

Local illustrations of landscape dynamics with 
known drivers

Hemlock decline in Appalachian forests

Widespread decline and mortality of the evergreen 
conifer species eastern hemlock (Tsuga canadensis) 
and Carolina hemlock (Tsuga caroliniana) have been 
caused by hemlock wooly adelgid (Adelges tsugae), 
a non-native invasive insect pathogen in eastern 
North America (Ellison et al. 2018). In the southern 
Appalachian Mountains, the primary wave of hem-
lock decline occurred from approximately 2005 to 
2010, having a more devastating impact than in most 
other affected regions (Ford et al. 2012; Krapfl et al. 
2011; Vose et  al. 2013). Hemlock is a widespread 

Fig. 6   Multi-year land surface phenology dynamics in mixed 
deciduous forest in the southern Appalachian Mountains 
affected by an invasive insect pathogen, the hemlock wooly 
adelgid. Widespread decline and mortality of two evergreen 
host tree species, eastern hemlock and Carolina hemlock, drove 
gradual winter NDVI decline during the first half of the study 
period. a True color air photo of an affected, mostly forested, 
subregion. The highest-elevation forests are in the center and 
northeastern parts of the image, and non-forest (developed and 
agricultural) areas are visible near the northwestern and south-
eastern corners. b Annual phenological classes during a single 
year, the pheno-year corresponding to 2017. c The Shannon 
Entropy (H) metric. The complexity of multi-pixel landscape 
dynamics across the full time series is higher in non-forest and 
in higher elevation forests. d Disequilibrium trajectory of the 
Development metric. The disequilibrium dynamics suggest 
local long-term decreases and increases in the metric. Land-
scapes with large reservoirs are removed (white). e, f Repre-
sentative single-pixel NDVI time series showing (e) a pixel 
affected by hemlock decline and f an unaffected pixel. In this 
region, most landscapes showing a decreasing trajectory for 
Development typically contain many pixels similar to (e)

◂
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and common forest canopy tree in the region, and 
the gradual but pervasive disturbance associated with 
hemlock decline has contributed to the long-term 
complexity and organization of forest dynamics. In 

terms of pixel-level LSP, evergreen decline drove 
gradual reductions in winter NDVI in MODIS pixels 
where hemlock was a dominant component of mixed 
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deciduous forests, reducing mean productivity and 
increasing seasonality (Fig. 6e) (Norman et al. 2013).

Pixel-level phenoclasses in the region vary within 
forest, associated in part with elevation, while non-
forest (mainly agricultural and urban) areas are more 
distinctive (Fig.  6a, b). At the landscape scale, the 
H metric (Fig.  6c) suggests that the complexity of 
landscape dynamics is greater in non-forest, and in 
high-elevation forests, but forests showing evergreen 
decline do not have obviously distinctive H values. 
However, the pixel-level dynamics associated with 
evergreen decline result in distinctive long-term dis-
equilibrium dynamics at the landscape level (Fig. 6d). 
Strong within-forest pattern is evident in the dis-
equilibrium trajectories—in particular, a decreasing 
trajectory in the Development metric in this region 
is primarily associated with evergreen decline. Most 
of the forest landscapes in Fig. 6d showing Develop-
ment decrease contain many pixels with NDVI time 
series similar to that shown in Fig. 6e. This indicates 
long-term decline in the degree of organization and 
predictability associated with LSP dynamics in the 
affected forest landscapes.

Severe wildfire and post‑fire dynamics

Wildland fire has complex impacts on LSP, causing 
shifts in annual timing, seasonality, and productivity 
that can depend on burn timing and severity, recovery 

history, and the type of vegetation affected (Wang and 
Zhang 2020). The potential for these shifts to influ-
ence the long-term complexity of landscape dynam-
ics is suggested by widespread, disjunct patches of 
extreme values in KL divergence and disequilibria of 
the IT metrics in the western United States (Fig. 5b, 
e, f). The frequency, extent, and mean size of large 
wildfires in this region have all increased in recent 
decades (Costanza et al. 2023; Dennison et al. 2014; 
Weber and Yadav 2020). Based on clear spatial asso-
ciations, we suggest that an important fraction of 
western landscapes showing extreme IT disequilibria 
experienced fire during or shortly before this study’s 
observation period (Fig. 7).

The High Park fire burned approximately 350 
km2 during June of 2012 to the west of Ft. Collins, 
Colorado, along a gradient from conifer forest with 
varied tree species compositions at higher eleva-
tions to shrubland and rangeland at lower elevations 
(Coen and Schroeder 2015). Annual LSP across the 
region where the fire occurred is heterogenous, vary-
ing among and within forest, shrubland/grassland, 
agricultural, and urban areas (Fig.  7b). Within the 
fire perimeter, the phenoclasses present five years 
post-fire are distinctive from adjacent unburned for-
est, showing strong patchiness and locally novel phe-
noclasses. The KL metric further indicates strong 
disequilibrium of the observed LSP dynamics asso-
ciated with the fire (Fig. 7c). The disequilibrium tra-
jectory of CE highlights variation in the directional-
ity of these dynamics (Fig. 7d), which we suggest is 
related to spatial variation in pre-fire vegetation type 
and phenology, burn severity, and post-fire phenol-
ogy (Coen and Schroeder 2015). A strong propor-
tion of landscapes within the burn perimeter showed 
evergreen forest-dominated LSP shifting to an her-
baceous/shrub dominated LSP with lower productiv-
ity and greater seasonality (Fig. 7d, e). Among such 
wildfire landscapes, a trajectory of decreasing CE 
may be associated with irregular and less predict-
able pre-fire dynamics shifting to more regular and 
predictable post-fire dynamics (Fig. 7d), whereas the 
more widespread areas showing increasing CE may 
be associated with an opposing shift, i.e., regular-to-
irregular recovery dynamics (Fig. 7e). These shifting 
dynamics suggest a reorganization of LSP spatiotem-
poral pattern that may develop further with vegetation 
recovery beyond the years included in our data.

Fig. 7   Multi-year land surface phenology dynamics in a 
region impacted by high-intensity wildfire. a Post-fire true 
color air photo. The High Park fire occurred in summer 2012, 
west of Ft. Collins, Colorado. The city of Ft. Collins and 
nearby agricultural lands are in the eastern part of the image, 
with high-elevation conifer forest to the west. The fire perim-
eter is shown in yellow (Monitoring Trends in Burn Severity 
2022). b Annual phenological classes during a single year, the 
pheno-year corresponding to 2017, with novel phenoclasses 
and local patchiness evident within the fire perimeter. c High 
values for Kullback–Leibler (KL) divergence suggest strong 
disequilibrium dynamics during the observation period, i.e., a 
trajectory towards novel conditions. d The disequilibrium tra-
jectory of Conditional Entropy (CE) suggests local long-term 
decreases and increases in unpredictability within the fire 
perimeter. e, f Representative single-pixel NDVI time series. 
Many high burn severity areas showed evergreen forest-dom-
inated phenology shifting to an herbaceous/shrub-dominated 
phenology with higher seasonality and lower productivity. Var-
iation in the CE trajectory may be related to burn severity and 
recovery, and to differences in local pre-fire phenology. Land-
scapes with large reservoirs, and the highest elevation areas in 
the southwest corner, are removed (white)

◂
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Discussion

The IT metrics we generated show spatial patterns 
that are in many instances readily interpretable. 
Although not analyzed here, their associations with 
dominant climatic, topographic, vegetation type, 
and land use gradients are discernable at continental 
and more local scales. This is not surprising, since 
large-scale vegetation phenological characteristics 
frequently correspond with, and can be indicative 
of, those gradients (Bajocco et al. 2019; Bolton et al. 
2020; Cleland et al. 2007; Silveira et al. 2022; Zhang 
et al. 2019). But these associations go beyond annual, 
pixel-level LSP profiles. The IT metrics reveal asso-
ciated gradients in landscape-level LSP heterogene-
ity in both space and time. For example, forest land-
scapes in the southwestern United States show local 
spatial heterogeneity in phenoclasses, and the land-
scape composition of phenoclasses can be related to 
elevation, forest type composition, forest manage-
ment, and wildlife habitat use (Hoagland et al. 2018). 
Agriculture provides another example—agricultural 
LSP differs from forest and rangelands, and pixel-
level trends in annual seasonality, productivity, and 
timing can be driven by crop type changes (Konduri 
et  al. 2020; Zhang et  al. 2019). Beyond this, the IT 
metrics also suggest high complexity in agricultural 
landscapes relative to forest landscapes, at least at 
the scale of our analysis. Agricultural regions such as 
the Mississippi Alluvial Valley and California’s Cen-
tral Valley showed high H driven by both LSP spatial 
heterogeneity and temporal dynamics (Fig. 4). This is 
consistent with observations of high spatial and tem-
poral landscape heterogeneity associated with diverse 
cropping systems, harvest schedules, agricultural par-
cel patterns, and land cover (Heintzman et  al. 2024; 
Konduri et al. 2020).

There are other, less familiar large-scale patterns 
apparent in the IT metrics that are not readily relat-
able to obvious drivers, which we suggest probably 
derive from complex influences of multiple drivers 
on LSP dynamics over time. In these cases, multiple 
otherwise ecologically distinctive landscapes may be 
shown to have similar regimes of LSP dynamics (e.g., 
highly predictable or unpredictable dynamics), and 
conversely, multiple landscapes with similar annual 
LSP properties may behave quite differently over 
longer time periods. In such cases, the IT metrics may 
capture spatiotemporal landscape properties that are 

difficult to recover from combinations of more tradi-
tional spatial or Earth observation data such as land 
use/land cover, climate, and topographic data, or from 
change or trend analysis at the pixel level alone (Ken-
nedy et al. 2014; Pfeifer et al. 2012). For this reason, 
we expect that there is novel information in the IT 
metrics which can be useful in a variety of applica-
tions wherein quantifying landscape dynamic regimes 
can complement other landscape data. These may 
include assessing ecosystem dynamics and resilience 
modeling (Chambers et  al. 2019; Dronova and Tad-
deo 2022; Trumbore et al. 2015); assessing ecological 
impacts of climate change and various other kinds of 
ecological risk assessment (Mayer et al. 2016; Wang 
and Zhang 2020); ecosystem service modeling and 
assessment (Müller 2005; Pomara and Lee 2021; Rieb 
et  al. 2017); and species and ecosystem distribution 
modeling and habitat suitability modeling (Franklin 
2010; Hoagland et al. 2018; Ponti and Sannolo 2022).

In each of these areas LSP-based measures of land-
scape dynamics may improve modeling and predic-
tion, by providing landscape ecological links between 
stressors such as climate change and the ecosystem 
services, biodiversity, and other values that they 
impact. These impacts can be direct, such as physi-
ological stress on vegetation from chronic drought, 
but indirect impacts of climate change are also per-
vasive, involving more complex system pathways 
(Daniels et  al. 2011; Weiskopf et  al. 2020). It may 
not be practical to measure all components of such 
pathways, but more synoptic measures of landscape 
dynamic regimes and how these regimes change over 
time and space may ‘stand in’ by quantifying the most 
relevant system-level variability. For example, we 
suspect that climate variability represents one driver 
of variation in the IT metrics within ecosystem types 
such as forests. In turn, the metrics could prove to be 
useful predictors of variation in an ecosystem service 
such as clean water supply from forest watersheds, 
which is impacted by variable forest condition and 
cover (Caldwell et  al. 2023; Smith et  al. 2011). We 
expand on this in the following discussion of land-
scape resilience.

Landscape resilience

The potential of the IT metrics for studying land-
scape resilience follows several premises that link the 
metrics to key aspects of complex system behavior. 
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Landscapes, as complex ecological systems, can be 
expected to become more ascendent (sensu Ulano-
wicz 1986) in the absence of disturbance, filling in 
with vegetation to the extent possible given local con-
straints (climate, soils, land use, etc.) and becoming 
more predictable so long as they remain relatively 
undisturbed (Müller 2005). Ascendency implies 
growth, development, and organization—but high-
ascendency, high-MI, predictable systems may also 
be brittle in the sense that they are not readily recov-
erable following major disturbance (Holling 1973).

System uncertainty, quantified by the CE and over-
head metrics, is related to random perturbations and 
to system redundancies (transitions from two or more 
different states to the same subsequent state, and vice 
versa). Disturbances of various kinds work against 
growth and development, altering vegetation in typi-
cally more drastic and unpredictable ways, usually 
introducing increased uncertainty. In extreme cases 
unpredictable dynamics may be driven by frequent, 
compounding disturbances leading to system degra-
dation. But redundancies can also provide flexibility 
and adaptability, allowing for continuity of system 
functions despite turnover in system states or compo-
nents (Holling 1973; Ulanowicz et al. 2009).

In general, a mixture of uncertainty and ascend-
ency is present in overall system complexity. One 
expects high uncertainty where disturbances and 
redundancies are prevalent, and high ascendency 
where growth and development dominate. It has been 
suggested that the presence of both of these tenden-
cies together in ecological systems confers adaptive 
capacity and resilience up to some limit (Costanza 
and Mageau 1999; Parrott 2010; Ulanowicz 2009). 
But if these limits exist—for example, a thresh-
old or rate at which increasing system uncertainty 
ceases to confer adaptive capacity and begins to con-
fer degradation—they are unlikely to be known for 
most applied cases, and they may be highly context 
dependent and difficult to generalize (Johnstone et al. 
2016; Ulanowicz et al. 2009).

For this reason, establishing relationships between 
IT metrics and landscape resilience is likely to depend 
on (1) additional knowledge of landscape setting and 
disturbance history, and (2) well-defined resilience 
targets such as the sustainability of system processes, 
ecosystem services, or biodiversity—i.e., resilience 
of what, to what (Carpenter et  al. 2001). For exam-
ple, a working hypothesis based on the theoretical 

expectations outlined above might suggest that the 
sustainability of ecosystem services under conditions 
of frequent disturbance corresponds with a predict-
able ratio of ascendency to overhead—at least within 
particular domains defined by biophysical setting, 
ecosystem type, or other criteria (Ulanowicz et  al. 
2009).

Testing this working hypothesis is a potential 
application of the IT metrics that could advance our 
understanding of dynamic landscapes and their impli-
cations for resilience. The formulation of the IT met-
rics as large-scale data products such as those we 
have presented allows their comparison with other 
data quantifying disturbances and ecosystem ser-
vices, potentially establishing an operational role for 
LSP monitoring in resilience assessment. Using LSP 
to explore interactions among disturbance, recovery, 
uncertainty, ascendency, and other system behav-
iors may lead to repeatable measures for assessing 
landscape resilience, even given important context 
dependencies (Carpenter et  al. 2001; Quinlan et  al. 
2016).

Further exploring shifting landscape mosaics

There are multiple ways in which the IT approach we 
present could be applied to spatiotemporal data to fur-
ther characterize the complexity and organization of 
dynamics, and to examine potential sensitivities in the 
analytical approach. The metrics are likely to display 
scale dependencies, which can be explored by recal-
culating them at smaller and larger landscape extents 
(number of pixels), spatial grains (size of pixels), and 
across shorter and longer time periods. The degree of 
typological distinction chosen when generating phen-
oclasses—i.e., the total number of phenoclasses—can 
also influence the magnitude of observed dynamics, 
although our initial explorations (not reported here) 
suggest that relative differences among landscapes in 
IT metric values are robust across reasonable varia-
tion in the fineness or coarseness of phenoclasses, so 
long as their number is sufficiently large.

The landscapes for which the metrics are cal-
culated could be delineated differently to address 
research goals defined around spatial units such 
as watersheds or forest management units. Pixels 
can also be aggregated into ‘landscapes’ by eco-
logical similarity regardless of location, e.g., bot-
tomland hardwood vs. upland pine forest pixels, 
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or even by phenological characteristics (Hargrove 
and Hoffman 2004). This would help characterize 
the landscape dynamic regimes of different system 
types and may provide insights into the drivers of 
their dynamics. The approach we describe can also 
be used with different data types, so long as the 
temporal sampling density is adequate to describe 
annual profiles. For example, weather data are typi-
cally available with dense (e.g., daily) sampling, 
from which annual descriptors such as temperature 
and precipitation seasonality are commonly calcu-
lated. Information-theoretic metrics derived from 
such data could help quantify the complexity and 
organization of interannual climate variability, as 
well as the stability of such dynamics over longer 
timeframes.

A limitation of our analysis is that it ignores the 
spatial configuration or arrangement of LSP classes 
within landscapes. Spatial composition and con-
figuration each contribute to spatial complexity, 
and both are fundamental concerns in landscape 
ecology. Multiple recent studies have quantified 
landscape configurational entropy using different 
methods, some using Shannon entropy based in 
information theory (Nowosad and Stepinski 2019; 
Wang and Zhao 2018), and some using Boltzmann 
entropy based in thermodynamics (Cushman 2016, 
2021; Gao and Li 2019). Developing approaches 
that integrate the composition and configuration of 
landscape components in both space and time is a 
rich frontier for understanding landscape complex-
ity and organization (Parrott 2010).

More generally, observed LSP dynamics may be 
assessed at landscape scales using a wide variety 
of approaches. LSP defines pixel characteristics 
that fluctuate with changes in the amount, composi-
tion, condition, growth, disturbance, and recovery 
of vegetation. Because of these sensitivities, LSP 
is emerging as a primary approach for ecologically 
nuanced landscape characterization from remotely 
sensed data. Separately, a wide variety of met-
rics have been developed to describe aspects of 
landscape pattern and change over time in terms 
of patch dynamics, gradient analysis, and other 
approaches (Costanza et al. 2019; Gustafson 1998, 
2019). As LSP data from various remote sensing 
platforms become more widely available, and as 
longer LSP time series accumulate, it will be use-
ful to explore how various metrics beyond those 

we have examined may be adapted to LSP data to 
describe landscape ecological pattern and process.

Landscape dynamics assessment tool

The multi-annual IT metrics and their trajectories, 
as well as the annual LSP variables that underpin 
them (Brooks et al. 2020), constitute a large, inter-
related set of LSP data products for monitoring and 
interpreting spatiotemporal landscape ecological 
pattern and change. They can potentially aid the 
investigation of properties such as landscape resil-
ience that involve complex dynamics over time, and 
may have broad environmental science applications. 
But they are time consuming and resource demand-
ing to calculate. This barrier is partly addressed by 
the Landscape Dynamics Assessment Tool (Lan-
DAT; https://​landat.​org). LanDAT summarizes 
the data development process and allows users to 
view the full suite of data products and the associ-
ated pixel-level NDVI time series in an interactive 
map environment with other geographic informa-
tion. The annual phenoclass data used as inputs in 
this study, and the IT metric results, are available 
via LanDAT for download in raster format (also see 
Data Availability statement).
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